Asymmetric Synthesis of 5-Substituted γ -Lactones and Butenolides via Nucleophilic Additions to Oxycarbenium Ions Derived from 5(*R*)-(Menthyloxy)-4(*R*)-(phenylsulfanyl)-2(3*H*)-dihydrofuranone

Arjan van Oeveren and Ben L. Feringa*

Department of Organic and Molecular Inorganic Chemistry, Groningen Center for Catalysis and Synthesis, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received January 12, 1996

Optically active 5-alkyl-substituted butenolides and γ -lactones are attractive building blocks in natural product synthesis¹ and comprise structural moieties frequently present in, e.g., insect pheromones,² cardeno-lides,³ lignans, and flavor components.⁴ Efficient and stereoselective synthetic routes to these products in enantiomerically pure form are highly desirable.⁵ As part of our explorative studies toward the use of 5(*R*)-(men-thyloxy)-2(5*H*)-furanone (**1**) as a chiral synthon,^{6,7} the enantioselective synthesis of a number of naturally occurring lignans has been reported.⁸

5(R)-(Menthyloxy)-2(5H)-furanone (1) reacts with thiophenol and a catalytic amount of triethylamine to give stereospecifically and in excellent yield the trans addition product **2** (Scheme 1), which features an attractive functional group arrangement to generate α -sulfanyl oxycarbenium ion **3**. Here we report the fast and highly stereoselective transformations of **2** to 5-alkyl-substituted 4-(phenylsulfanyl)-2(3H)-dihydrofuranones **4** or 4-(menthyloxy)-3-(phenylsulfanyl) carboxylic acids **5**, which are precursors for butenolides and γ -lactones.

Various methods for C–C bond formation via Lewis acid-mediated reactions of acetals with nucleophiles have been developed.⁹ As demonstrated by a number of groups,¹⁰ there is a mechanistic divergence between S_N 2-

(4) (a) Bloch, R.; Gilbert, L. J. Org. Chem. **1987**, 52, 4603. (b) Thijs, L.; Waanders, W. P.; Stokkingreef, E. H. M.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas **1986**, 105, 332.

(5) For recent examples, see: (a) Brown, H. C.; Kulkarni, S. V.;
Racherla, U. S. *J. Org. Chem.* **1994**, *59*, 365. (b) Miller, M.; Hegedus,
L. S. *J. Org. Chem.* **1993**, *58*, 6779. (c) Doyle, M. P.; Protopopova, M.
N.; Zhou, Q.-L.; Bode, J. W. *J. Org. Chem.* **1995**, *60*, 6654.

(6) For reviews see: (a) Feringa, B. L.; De Jong, J. C. Bull. Soc. Chim. Belg. **1992**, 101, 627. (b) Feringa, B. L.; De Lange, B.; De Jong, J. C.; Lubben, M.; Faber, W.; Schudde, E. P. Pure Appl. Chem. **1992**, 64, 1865. (c) De Jong, J. C.; Van Bolhuis, F.; Feringa, B. L. Tetrahedron: Asymmetry **1991**, 2, 1247.

(7) (a) Feringa, B. L.; De Lange, B.; De Jong, J. C. J. Org. Chem. **1989**, 54, 2471. (b) Rispens, M. T.; Keller, E.; De Lange, B.; Zijlstra, W. J.; Feringa, B. L. Tetrahedron: Asymmetry **1994**, 5, 607. (c) Hulst, R.; De Vries, N. K.; Feringa, B. L. J. Org. Chem. **1994**, 59, 7453. (8) (a) Van Oeveren, A.; Jansen, J. F. G. A.; Feringa, B. L. J. Org.

Scheme 1

and S_N1 -type processes. It has been shown that Lewis acid-mediated additions of silylated nucleophiles to α and β -sulfanyl-substituted aldehydes proceed with excellent diastereoselectivities.¹¹ Furthermore, reactions of α -sulfanyl acetals with carbon nucleophiles have been studied by Saigo and co-workers.¹² In furanone **2**, an α -sulfanyl-substituted, mixed acyloxy–alkoxy acetal moiety is present, and upon treatment with a Lewis acid it is observed that the acyloxy acetal bond is always broken¹³ and this reaction path leaves only two likely intermediates (Figure 1). The stereoselectivity of these reactions can be rationalized by the Felkin–Ahn model, and conformers **A** and **B** lead to anti and syn adducts, respectively. Conformer **A** is preferred, and in most cases the anti adduct is the only detectable diastereomer.

When 4(*R*)-(phenylsulfanyl)-substituted furanone **2** is treated at -70 °C with 1-2 equiv of TiCl₄ in the presence of a variety of nucleophiles such as allylsilanes, silyl enol ethers, or diorganozinc reagents a very fast reaction occurs. After a reaction time of 5 min and subsequent aqueous workup, β , γ -substituted acids **5** are isolated in 56–72% yield and in most cases with a diastereomeric ratio >98:2 according to ¹H and ¹³C NMR (Scheme 2, path A, Table 1, entries 2, 4, 6, 8, and 12). In addition to the acids **5** small amounts of lactones **4** (5–20%) are also found in the crude product, but these could be easily separated.

When the addition of nucleophiles 9-16 is performed in the presence of 2 equiv of TiCl₄ for 1 min at ambient temperature, followed by aqueous workup, the lactones **4** are obtained. In a few cases small amounts of the acids **5** ($\leq 10\%$) are also formed. Apparently, the intermediate **6** is activated by the excess of Lewis acid present, and upon addition of water hydrolysis to the hydroxy acid **8**

^{(1) (}a) Hanessian S. In *The total synthesis of natural products: The chiron approach*; Pergamon Press: New York, 1983; Chapter 9. (b) Fernandez, A.-M.; Jacob, M.; Gralak, J.; Al-Bayati, Y.; Plé, G.; Duhamel, L. *Synlett* **1995**, 431. (c) Takahata, H.; Uchida, Y.; Momose, T. *J. Org. Chem.* **1994**, *59*, 7201. (d) Canan Koch, S. S.; Chamberlin, A. R. J. Org. Chem. **1993**, *58*, 2725.

^{(2) (}a) Fukusaki, E.; Senda, S.; Nakazono, Y.; Omata, T. *Tetrahedron* **1991**, *47*, 6223. (b) Wheeler, J. W.; Happ, G. M.; Araujo, J.; Pasteels, J. M. *Tetrahedron Lett.* **1972**, *46*, 4635. (c) Mori, K. *Tetrahedron* **1989**, *45*, 3233.

⁽³⁾ Rao, Y. S. Chem. Rev. **1976**, 78, 625.

^{(8) (}a) Van Oeveren, A.; Jansen, J. F. G. A.; Feringa, B. L. J. Org. Chem. 1994, 59, 5999 and references cited. (b) Middel, O.; Woerdenbag, H. J.; Van Uden, W.; Van Oeveren, A.; Jansen, J. F. G. A.; Feringa, B. L.; Konings, A. T.; Pras, N.; Kellogg, R. M. J. Med. Chem. 1995, 38, 2112.

⁽⁹⁾ For representative reviews, see: (a) Alexakis, A.; Mangeney, P. *Tetrahedron: Asymmetry* **1990**, *1*, 477. (b) Mukaiyama, T.; Murakami, M. *Synthesis* **1987**, 1043.

^{(10) (}a) Mori, I.; Ishihara, K.; Flippin, L. A.; Nozaki, K.; Yamamoto,
H.; Bartlett, P. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 6107. (b)
Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089.
(c) Sammiaka, T.; Smith, R. S. J. Am. Chem. Soc. 1994, 116, 7915.

⁽¹¹⁾ Annunziata, R.; Cinquini, M.; Cozzi, F.; Cozzi, P. G.; Consolandi, E. J. Org. Chem. **1992**, *57*, 456.

 ⁽¹²⁾ Kudo, K.; Hashimoto, Y.; Sukegawa, M.; Hasegawa, M.; Saigo,
 K. J. Org. Chem. 1993, 58, 579.

⁽¹³⁾ Van Oeveren, A,; Feringa, B. L. Tetrahedron Lett. 1994, 35, 8437.

Table 1. Additions of Nucleophiles to OxycarbeniumIons Derived from 2

Entry	Nucleophile	T (°C)	time (n	nin)Product (R)	(ratio ª)	Yield ^b %	trans : cis ¢ (anti : syn ¢)
1	SiMeg 9	23	1	4a/5a	(>9 : 1)	50	92 :8
2	<i>y</i> • •	-70	5	5a/4a	(8:2)	56	9 :1
3	Ph	23	1	4b/5b	(>9 : 1)	65	>98 :2
4	Me ₃ SiO	-70	5	5b/4b	(8 : 2)	59	>98 :2
5	MeO Me	23	1	4c/5c	(>9:1)	66	>98 :2
6	Me ₃ SiO Me 11	-70	5	5c/4c	(9:1)	72	>98 :2
7	\rightarrow	23	1	4d/5d	(>9 : 1)	74	>98 :2d
8	Me ₃ SiO Me 12 (E:Z 8:2)	-70	5	5d/4d	(8:2)	52	>98 :2ª
9	Me3SiO-13	23	1	4e/5e	(>9 : 1)	57	>98 :2d
10		23	1	4f/5f	(>9 : 1)	74	53 : 47d
11	Me ₃ SiO OMe	23	2	4g/5g	(>9 : 1)	56	9 :1
12	Et ₂ Zn 15	-70	5	5g/4g	(9:1)	57	>98 :2
13	(octyl) ₂ Zn 16	23	5	4h/5h	(>9:1)	53	>98 :2

aRatio determined by 1H NMR. bIsolated yield of the major isomer.

eRatio determined by 1H and 13C NMR of the crude product. 4 Diastereomeric ratio of the exocyclic stereogenic center was in the order of 6 : 4 in all four cases (entry 7-10).

R=	~⁄⁄	↓ ↓ Ph		$\gamma^{\mathbb{L}}$	Ů		Et	n octyl
	а	b	с	d	e	f	g	h

followed by lactonization takes place (Scheme 2, path B). A key feature of the second Lewis acid-mediated step is the stereoselective cleavage of the auxiliary group assisted by the α -sulfanyl functionality. Except for **4f**, trans lactones **4** are formed as the major, or in most cases only detectable, diastereomer. Even in the few cases (entries 1 and 11, Table 1) where small amounts of cis lactones **4** were obtained, these could be separated by simple column chromatography using silica gel.

Single crystal X-ray analysis of **4b** confirmed the trans relationship of the substituents at C_4 and C_5 .²¹ The trans configuration for the products **4a–e,g,h** has been assigned by comparison on the basis of ¹H NMR coupling constants and on the expected mechanistic similarity in this reaction for all nucleophiles used.¹⁴

The enantiomerically pure 5(S)-alkyl-4(R)-(phenylsul-fanyl)-2(3H)-dihydrofuranones **4** are excellent precursors for 5-alkyl-substituted butenolides or butanolides,^{15,16} whereas the phenylsulfanyl substituent allows a number

Scheme 4

of synthetically useful transformations. Reductive desulfurization of **4** could best be performed with Bu₃SnH/ AIBN and provided enantiomerically pure 5(*S*)-alkyl-2(3*H*)-dihydrofuranones **17** (Scheme 3). The flavor components and insect pheromones⁴ 5(*S*)-ethyl-2(3*H*)dihydrofuranone (**17g**) [85% yield, $[\alpha]_D = -50$ (*c* 1, MeOH) (lit.¹⁷ $[\alpha]_D = -53.2$ (*c* 1, MeOH))] and 5(*S*)-octyl-2(3*H*)-dihydrofuranone (**17h**) [66% yield, $[\alpha]_D = -35$ (*c* 0.48, MeOH) (lit.¹⁷ $[\alpha]_D = -36.8$ (*c* 0.3, MeOH))] were obtained using this procedure.

Alternatively, 5(*S*)-alkyl-2(5*H*)-furanones **19** are accessible via the sulfones **18** (Scheme 4). Oxidation of **4** with Oxone¹⁸ and subsequent elimination with basic alumina in CH₂Cl₂ gave the corresponding 5(*S*)-alkyl-2(5*H*)-furanones **19** in good yields.¹⁹ For example, 5(*S*)-ethyl-2(5*H*)-furanone (**19g**) [95% overall yield, $[\alpha]_D = +105$ (c 4.1,CH₂Cl₂) (lit.²⁰ for 5(R)-**19g** $[\alpha]_D = -97.6$ (c 2.08, CH₂Cl₂)] and 5(*S*)-(1-prop-2-enyl)-2(5*H*)-furanone (**19a**) (72% overall yield, $[\alpha]_D = +105$ (c 1.08, MeOH) were obtained using this procedure.

In conclusion, we have demonstrated that **2** is a valuable synthon for the synthesis of 3,4-disubstituted carboxylic acids, 5-substituted butenolides, and γ -lactones in enantiomerically pure form.

Acknowledgment. Financial support was provided by the Netherlands Organization for Scientific Research (NWO/SON).

Supporting Information Available: Experimental procedures for the Lewis acid mediated additions and spectroscopic data for compounds **4a**-**h** and **5a**,**b**,**c**,**d**,**g**. (5 pages).

JO960078R

(17) Roder, H.; Helmchen, G.; Peters, E.-M.; Peters, K.; Von Schnering, H.-G. Angew. Chem., Int. Ed. Engl. **1984**, 23, 898.

⁽¹⁴⁾ See the supporting information.

⁽¹⁵⁾ López, C.; Ĝómez, A. M.; Valverde, S. Synlett 1991, 825.

⁽¹⁶⁾ Carretero, J. C.; De Lombaert, S.; Ghosez, L. *Tetrahedron Lett.* **1987**, *28*, 2135.

⁽¹⁸⁾ Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287.
(19) Vidal, J.; Huet, F. Tetrahedron Lett. 1986, 27, 3733.
(20) Cardellach, J.; Font, J.; Ortuňo, R. M. J. Heterocyclic Chem.

⁽²⁰⁾ Cardellach, J.; Font, J.; Ortuno, R. M. *J. Heterocyclic Chem* **1984**, *21*, 327.

⁽²¹⁾ The author has deposited atomic coordinates for **4b** with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.